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D I S S I P A T I V E  T W O - V E L O C I T Y  H Y D R O D Y N A M I C S  

S. M. Shugrin UDC 532.5 

In [1], new equations were obtained for "ideal" two-velocity hydrodynamics. In this article, we use Onsager's 
general principle to construct a dissipative system. 

1, "Ideal" Two-Velocity Hydrodynamics.  Let the state of the system at the point (t, x ~, x 2, x 3) be characterized 

by the set (P(1), V(1), P(2), V(2), S), where p(j) _> 0 is the density of the j-th component, P(1) + P(2) > O; V(j) = (vk(j)) is the 

velocity of the j-th component; s is entropy. We put 

P -- PO) + P(2)' • =-" P(1)/P ' a -- ~ x )  + (t - • w -- u~) - a~l~. 

Now we can assume that the state of the system is characterized by the set u = (p, • s, v, w). In accordance with 
[1], the minimal two-velocity system has the form 

LO(u ) =- ~ + a_- 
at ax* (p~ = 0; (1.1a) 

a a 
L;(u) - ~t (po~) + - -  [pdv  k + • - • ~ + try ~1 = O; (1.1b) 

Ox j' 

0 O 
L~(u) = a t  [p(~ + o2/2)  l + - - { p d ' l e  + ~ / 2  + p / p  l + pv, l '[• - • ( o .  w) + •  • + T~c~j/p (1.2) ax ,~ 

+ • - • (1 - 2• = O; 

a a 

a a - k  
l~) -- Tt I " ~  + • -- •  + ~ - ~ l ~ a o  + •  -- •  + u ~ )  + ~ ( I  -- •  ] 

ap . a/~fl)o aT 
+ • + g(1 - x ) p " ~ -  + ~(,,)]-~ - q(1)O d + f w  / = O .  

(1.3a) 

(1.3b) 

Equations (1.1) represent the law of conservation of mass-momentum for the system as a whole, Eqs. (1.2) give the 

law of energy conservation, and Eqs. (1.3) are the law of  mass-momentum balance for component 1. Here, e(p, x, s, w 2) is 

the internal energy of  the two-velocity system determined - -  in accordance with hypothesis I in [1] - -  by means of the 

expressions 

p(e + o2/2) = peo(,o, • s) + pc1~1~/2 § pc2~2/2,  

de o = Tds  - p d ( l / p )  + i~tl)od~t, 

i.e. e = e 0 + x(1 - -  xw2/2. From this it follows 

de = Tds - p d ( 1 / p )  + ~(z)o + (1 - 2~)w~/2]d~ +. • - •  ~. (1.4) 
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The functions eo(p, x, s), ~(12)(P, X, S, W2), q(1)(P, x, s, w2),  f(p,  x ,  s, W 2) are assigned. The law of entropy 
conservation follows from (1.1)-(1.4) 

L(u)  =- ~ ( a s )  + (,os: + r - o = o, 

0 - ( / ~  - IJ(~iq) /T , /~(~ -#(~)o - (1 - 2~)w~/2. 
(1.5) 

The other equations of "ideal" two-velocity hydrodynamics (1.1)-(1.3) can be written in the form 

a o 
~n (u) -- at-'~o~ ) + - -  (P(,)~u) - q(~ = 0; (1.6a) ax ~ 

�9 3 �9 , 9  �9 

/#,,(u) = ~t(Pmdm) + a-~( t )do)~, ) )  ( l .6b)  

OR o~(D o aT 
+ ,~- + • - ,~)p ~ + ,..~ ;--)- - %a +/(~,> - ~%) = o; 

9̀ a 
e,l,(u) - ;,-r + - q l, = o ;  

(1.7a) 
�9 ` 9  ` 9  " k 

6,(") - ~%~%) + ~-~%~%%) 
(1.7b) 

aT 
9̀~' ~176 + ~ + l(ac~ ~ ac,) 0; + (1 - • 2 1 5  •  ~(2n-~- q(2) d - = 

~'Cn)  - -  - - / ~ ( ~ . ) ' / J ( : ~ o  - - ~ O ) o '  q (2 )  ---- - -  q o ) ;  
`9 

%(") - 7, ~o + p.,~,, /2 + pc~):c~/2] 
(1.8) 

+ ~"z~(,)(~){% + + (1 - + I 

+ p(~)~)[e o + ~ ) / 2  + p / p  + )q*(~o + 2~(**)lp(,)l} = 0. 

Equations (1.6) represent the law of mass-momentum balance for component 1, Eqs. (1.7) give the same for component 

2, and Eq. (1.8) is the energy conservation law. Adding (1.6) and (1.7), we obtain the mass-momentum conservation law for 
the system as a whole: 

9̀ d 
L~ =- ~t (Pc,) + P~)) + `9-'j (Pm~,) + P(~"~;) = 0; (1.9a) 

a �9 ,9  ~ . 

Equations (1.6), (1.8), and (1.9) are different forms of Eqs. (1.3), (1.2), and (I.1),  respectively. With allowance for 
(1.4), we obtain (1.5) from (1.6)-(1.8). 

If w = 0, then Eqs. (1.1), (1.2), and (1.3a) become the equations of one-velocity hydrodynamics: 

r~ = ~at + ~ ~,u*) = o; 
a 3 

r/(u) = Tt (,oa) + ~-j  roan" + p ~ l  = o; 

a o [pu,(r ~ + all2 + p/,o) l = 0; Lr = ~t ~o(% + ~712) l + a-~ 

a a 

~.(u) = ~ o )  + o--~ ~ :  ) - % = o. 

(1.10a) 

(1.10b) 

(1.11) 

(1.12) 

If  we multiply (1.10a) by qo - -(3 '0 - v2)/T, where 3'0 = eo + P/P - Ts - x~(1)o, and if we multiply (1.10b) by 
qj m -vJ /T ,  (1.11) by l /T,  and (1.12) by/~(1)o/T, we obtain the entropy conservation law 

a (Oso~) = 0. (1.13) L(u) = (os) + a-'~ 

539 



2. Onsager ' s  Genera l  Principle. Let there be a system of equations written in the form of conservation laws: 

- -  + - -  /,(u) = 0 (s = i ..... m). (2.1) 
a t  a x  '~ 

Here, u = (u 1 .. . . .  urn); ~s~(U), fs(U) E R. We assume that the system is complete in the sense of the word used in [2]. This 
means that there are qS(u) such that multiplication of (2.1) by qS yields yet another conservation law 

a@~ a~(u)  (2.2) 
- -  + F(u) = 0;  

a t  a x  ~' 

d~"(u) = q'd~o~, F = q~f~, (2.3) 

Meanwhile, the transformation u--, q(u) (q -= (ql . . . . .  qm) is one-to-one, i.e. the inverse transformation q---u  is unambiguously 

determined. The quantities (qS) are called integrating factors, the conservation laws (2.1) fundamenta l  conservation laws, 

and law (2.2) the closing conservation law. For example, with suitable enumeration, the integrating factors are as follows 

for system (1.10-1.12) 

qo = - (Yo - :/2)/T, qi = - ~ q4 = I/T, qs = -/xCl)o/T" (2.4) 

Let system (2.1) be invariant relative to the complete Galilean group I' [1] and, in particular, relative to the group 
SO(3), i.e. the groiap of rotations. We further assume that the initial set of integrating factors (ql .... qm) can be represented 

in the form of the set (z < 1 > . . . . .  z < r > ) ,  where each z < p > is transformed in accordance with the tensor rule in transformations 

from SO(3), i.e. each is a certain SO(3)-tensor (scalar, vector . . . .  ). Thus, in accordance with (2.4), for (1.10-1.12) the set 

q includes three SO(3)-scalars: - (To  - v2/2)/T, l /T,  and -/zO)0/T, as well as one SO(3)-vector - v / T .  
Below, we will be discussing a group of coordinate transformations. The group SO(3), supplemented by reflections, 

is transformed into the group O(3) of orthogonal transformations of the space R 3. 

There are now two main possibilities. First, each z<p> is transformed as a tensor of  the corresponding type in all 

transformations from 0(3) (and will be referred to as a Euclidean tensor of  the corresponding type). Second, certain Z<k > 
may be transformed as relative tensors of weight 1 [3] (and will then be referred to as relative Euclidean tensors of  the 

corresponding type). We recall that T - (Tiq...kqJ ~--'b) is called a relative tensor of weight 1 of  type (p, q) if in the coordinate 
transformation x --, R(x) the quantity T is transformed according to the rule T(x) --, T(R): 

~v"Jp = det (a.~ 1 ax~a ax~P ax"l axle 
kt'"kq ax61 "'" axar affh"" a~'q Tb'bqa'"'a~ 

In particular, ~" is a relative Euclidean scalar if in a mirror transformation of the coordinates ~" --, - ~'. 
System (2.1) will be called a system of the Onsager  type in the first case and a system of the Onsage r - -Kaz lmi r  type 

in the second case. For example, system (1.10-1.12) is an Onsager system. For these systems, dissipative terms are introduced 
so that symmetry conditions are satisfied for them (see below). In the case of Onsager--Kazimir systems, conditions of 

antisymmetry are satisfied for the relations connecting the tensors and the relative tensors. 
We will further assume that (2.1) is of the Onsager type. In changing over from (2.1) to a dissipative Onsager  

system, dissipative terms are introduced into (2.1) to yield the equations [4, 5] 

O,p~ o~o~(u) a r . , ,  aq'] (2.5) 
- -  + L(") = -- [';;(") 

at a~ a~ a.~ J ' 

Meanwhile, the following s y m m e t r y  conditions are satisfied 

~(,,) = ~(,,). 

We multiply (2.5) by qS and use (2.3). Instead of (2.2) we then have 

(2.6) 
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a4~O(u) a,t,'~(u) 
at ax' & k (2.7) 

(2.8) 

The function cr must also satisfy the requirements of dissipation and invariance. 

(~0 = ps) is the closing law in the given case, we adopt the following conditions. 

Dissipation Conditions: 

Since the entropy conservation law 

o ~ 0. (2.9) 

[1]). 

Invariance Condition: the function (r, determined by Eq. (2.8), is a Galilean scalar (see the tensor classification in 

With allowance for (2.6), we write Eq. (2.5) in the form 

'~--~' + - -  - / '  = ~ "  - 2 a(ad/ax '~) dt a x  k 

1 a2cr 
while L~ = - 2 a(aq'lax~)a(a4/a~)" 

Conversely, let us assign the function a(u, aq/0x). 

If we take 

then 

(2.10) 

We assume that it is quadratically dependent on the derivatives. 

1 a2o �9 

2 a ( a q ' / a x ~ ) a ( a c / / a . ~ )  ' 

= - 2 a ( a 4 / a ~ ) a C a 4 / a _ ~ )  = - ~ a ( a 4 / a , ~ ) a ( a 4 / a . , ? )  

i.e. symmetry condition (2.6) is satisfied. 
Thus, with a closing entropy conservation law, the overall procedure for introducing dissipative terms into Onsager 

system (2.1) reduces to the following: 
1) find integrating factors (ql ..... qm). If 'I'0(u) and 9~ are known, it is most convenient to find these factors on 

the basis of (2.3), i.e. from the relation 

d~ ~ = 4d~o~; (2.11) 

2) establish the general form of Galilean invariant o(u, aq/ax), which is quadratically dependent on the derivatives 
(aq2/axk); 

3) write the conditions for satisfaction of dissipation condition (2.9); 

4) use (2.10) to finally determine the dissipative Onsager system. 

The above method of introducing dissipative terms is then extended to systems for which the transformation q --, u (the 

inverse of u --, q(u)) is multiple-valued (i.e. systems for which there may be a finite set of inverse images u for certain q). 

Such systems may be encountered when phase transformations occur [1]. The same principle will be used below in two- 

velocity hydrodynamics, where not all of the equations are in the form of conservation laws. 

Note 2.1. It is often necessary to satisfy the "Curie principle" - -  the principle of the "conservation of causal symmetry 

in the symmetry of  the effects." Here, this principle is interpreted as follows: if qr and (Is are introduced as components into 

tensors of  different ranks, then LJkrs = 0 (the cases usually examined here are those in which l.Jkrs has diagonal symmetry 
relative to the indices jk, i.e.I.Jkrs ------- Lrs~Jk). As far as we know, this condition was not considered by Curie and in fact 

constitutes a another principle - -  an "asymmetry principle." If  Ukrs are constants or depend only on scalars, then the Curie 

principle follows from the requirement of the invariance of a. If  l_)krs(U) is dependent on vectors and other tensors of  rank 
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> 1, then, in the general case, the Curie principle is invalid as it is presently formulated (see Part 3 as well). Thus~ an 
accurate general formulation of the Curie principle requires that ~ be invariant. 

Note 2.2. In a discussion of this subject, A. N. Konovalov noted that (2.5) is sometimes best written in the form 

_ _  ~'k(u) 
~~  + ~ + S(u) + (l*SOq = O, 

at a~  

~o= = (~o~ . . . . .  ~o~.), / = ( f ,  . . . . .  f , . ) ,  q = (q~ . . . . .  q") ,  
(2.12) 

where 1 is a linear differential operator; l* is the adjoint operator; S(u) is a symmetric operator. 

The operators l and l* are expressed through a standard set of elementary tensor operators (differential forms) for 

symmetric and skew-symmetric tensors satisfying invariance conditions. They are found on the basis of  considerations relating 
to tensor classification (see [1]). In this regard, form (2.12) seems promising for describing and analyzing the general form 

of dissipative Onsager systems. 

Note 2.3. A clearer analysis of Onsager systems is obtained in the case of relativistic systems, where the requirement 

of Lorentz invariance is used regularly in place of the weaker SO(3)-invariance [5]. A similar approach is impossible for 
Galilean systems due to the absence of a nondegenerate metric in the 4-dimensional Galilean coordinate state. 

Note 2.4. We are formulating only a general principle in this section. Additional limitations that reflect the specifics 

of the given problem or are introduced to simplify the latter may be present. 

3. Dissipative Two-Velocity Systems. Let us turn to equations (1.1)-(1.3), (1.5), first calculating the integrating 
factors for them. To do this, we change (1.4) to the form 

0% - ~"~/2)dp 1 
d(p s) 

= T " + - ~ a ( p t )  ( 3 . 1 )  

- T--(~(1)o - (1 - 2• - --~-d[• - y.)p~ ], 

Yo =" t o  + P ~  p - -  T s  - >q~(i)o" 

Thus, in accordance with [1], the quantities p, pc, Or, K(1 - -  K)pw are canonical (thermodynamic) variables of the first 
order, while ps = ~(p, pc, px ,  x)pw is the first canonical (thermodynamic) potential. We now convert (3.1) to the complete 
differential form and designate E - p(e + v2/2). Here, ps is a function of nine quantities: p, pv, E, px,  xpv + x(1 - -  

x)pw. It follows from (3.1) that 

a@s) = %4o + qflfpd) + q,ae + qfl(ox) + q s + f l I ~ r  + ,,(1 - ~ ) p r  

1 
qo - - ~ b ' o  - ~w2/2  + •  w) - o2/21 = - -~h '0  - ~2)/21; 

l 1 
qs--- - - T ( t / - -  xw/) ---- - 7d(z); 

q, =- 1/T; 

1 
qs -= ~ C z ) o  - ( I  - 2 •  - ( o "  w) l 

l 
= - 7[,uci)o - ~ u / 2  + ~1>/2 l; 

1 
qs+i =- - ~ "  

(3.2) 

(3.3a) 

(3.2b) 

(3.3c) 

(3.3d) 

(3.3e) 

The integrating factors are determined (compare (1.1)-(1.3), (1.5), and (3.2)-(3.3) with (2.1)-(2.2), (2.11)). Now the 
problem involves determining the invariant ~r. First we formulate general restrictions on a in addition to those mentioned in 

Part 2. Dissipative terms are not usually introduced into mass conservation law (1.1a), so ~r should not depend on (Oq0/0xk). 
We expand the tensor (avi/Ox k) into the sum of the symmetric diagonal tensor (~ikOvl/0xl) - -  which has no trace and is made 

up of the components (i/2)(0vi/0x k) + (0vk/0x i) - -  (2/3)(r - -  and a skew-symmetric tensor with the components flik 

---- (1/2)(Ovi/0x k) - -  0vk/Ox i. The invariant cr is independent of  (flik), since no dissipation occurs when the fluid rotates as a rigid 
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body [6]. However, in cases in which such motions are prohibited by a heterogeneous medium, are we to conclude that a is 

still independent of (flik)?! It should be noted that it does follow in any way from the foregoing that a is independent of Oaik 
-- (1/2)(0wi/ax k - -  0wk/0xi). 

The general expression that we finally obtain for a turns out to be very awkward. Thus, for the sake of simplification 

we take the expression 

~ 0 T  cqT 2a aT ~j + 2. ~ a~ 
a = 0x / ax / + T 0x/ax / 0x / 0x a 

2 2 

(3.4) 

The quantities X, c~, X, rl(s), and ~'(s) in (3.4) may depend only on the scalars p, x, s, and w 2 (also see superfluid 

dynamics in [6]). 

We write the condition of non-negativity of (3.4) in the form 

Ic 

0 1 . 1 �9 

h,,~ - - 7 t , 0  + p / p -  r~  + (I  - • - ~ , / 2 ] ,  , %  - - - id , ,~ ,  

o 1 1 . 

r ~ I / T .  

Now it is convenient to calculate the dissipative terms for system (1.6)-(1.8). We find the following integrating factors 

for it: 

r/(,) >I0,~c,) >~0'~ >~0,2 >~ O, xk >~a 2. 

The derivatives in (3.4) should then be expressed in terms of derivatives of hC'(k). For example, we have 

= - h~,, + e , , , / 2 T  + h,% - % , / 2 r ,  

from which 
o 0 

- - _  �9 a . / ah(2) _ �9 

- ( ~ / 2  - ~ / 2 ) ~ / 0 x  ~. 

After calculating, we arrive at the equations 

:.,0,) = ~ x V}  + 7 7}J;  

+'h"[a% + a7 s 

%(~) = a-7 ; w j  

%r = ; 7  ~--~- r--~ ~' a7 + ~" [ a~* + a7  3 ,v* + ~c~a,* a 7  1 ; 

(3.6a) 

(3.6b) 

(3.7a) 

(3.75) 
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q ~ a.~ + ax k 3 
(q) =(q) ax ~ J 

(3 .8)  

We multiply (3,6a) by h0(1), (3.6b) by hJ(1 ), (3.7a) by h~ (3.7b) by hJ(2), and (3.8) by r and add. As a result, we 
obtain 

+ ,~ ( ~ / T )  - 2 ~  . ( 3 . 9 )  Ls(u ) = a + "~ ax k 

Equations (3.6)-(3.8), along with the equation (3.9) that follows from them, constitute the complete system of equations 
of dissipative two-velocity hydrodynamics. Adding (3.6) and (3.7), we have 

L~ = 0; 

"(-) t + ~ 
If w --- 0, then (3.10), (3.8), and (3.6a) become the equations of one-velocity hydrodynamics: 

(3.10a) 

(3.10b) 

L~ = 0; (3.11a) 

r.~(u) = a-~r ,1 + a--~ - ~ + CaJ" , 
(3.11b) 

a I aT a T~.~_xk L~(-) = ~ l X ~  + (3.12) 

+o  ~ + ~ -  ; s ' ; 7  +C•" ; 

~176 
#(,,(u) = ~ "  ~.aa-~ + 7 ~ - / .  (3.13) 

Note 3.1. Surprisingly, no attempt has apparently yet been made to prove that friction was actually introduced into 
Navier-  Stokes equations (3.1 lb) and (3.12) in order to satisfy the Onsager principle. Such a proof would simultaneously show 
that the "Curie principle" is invalid here, the reason obviously being the fact that the corresponding kinetic coefficients LJksr 
depend on the vector v (in canonical notation! Incidentally, for the energy equation, this is already clear from (3.12)). 

4. Nontraditional Approach. The method used in Part 3 to obtain dissipative terms corresponds to the classical 
Onsager principle in the general form described in Part 2. There is now no doubt as to its correctness for one-velocity systems 

(under the condition, of course, that the dissipative terms are linear relative to the derivatives). However, since there is some 
doubt in the case of two-velocity systems, below we will describe an alternative method of representing the dissipative terms. 

The momentum balance equations for the components (1.6b) and (1.7b) are nondivergent. The force caused by total 
pressure ap/ax is distributed among the components in proportion to mass: x and (1 - x). This is probably also true for the 
other forces acting on the system (and entering into the conservation law for total momentum). Conversely, the equations for 
the system as a whole - -  conservation laws for mass, momentum, energy, and other quantities (if they exist) - -  will generally 
retain their divergent structure. Proceeding on the basis of these heuristic considerations, we write the following equations 

(compare with (3.6)-(3.8)) 

= @ + (4. la) 
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41)(u) = .~ i  {~.d(1)_~xk + a Td(1) ~xk I~T] 

+• ~ +r 
0{ 

~ ( " )  = a ~  o~ ~ 

+ , l < ~ , , / 2  - ~:>/:)~ 
- -  ~ - -  .~  

(4.1b) 

(4.2a) 

(4.2b) 

(4.3) 

Adding (4:1) and (4.2), we obtain the mass-momentum conservation law for the system as a whole: 

L~ = ~ + 
at ax ~ (p~?) = 0; (4.4a) 

U(u) = ~ r /  ~ +  a--~- 3d~ ~ + ~ *  . (4.4b) 

Here, 7, ~', X, and ~ depend only on p, K, S, and w 2 (or another equivalent set of scalars). We multiply (4. la) by h0(1), 
(4.1b) by hi(1 ), (4.2a) by h~ (4.2b) by hi(2 ), and (4.3) by r and add the products. This gives us 

z , ( . )  = ~- + T~ '  ~ ~'7 + " ~ / ~  - :t~ , 

X a T  a T  2 a  aT a~ a~ a~ 
J 

2 2 

+ + ~-- _ --ff,~ + 
j . t  ax' 3_ "T " 

It is still not certain which of the two constructions of the two-velocity dissipative equations is correct (although variant 
(4.14.4) seems more natural). Additional arguments will be needed to make a final choice. Ultimately, it will be necessary 
to correctly generalize Onsager's principle to two-velocity systems. However, it is first necessary to recognize the problem, 
and illumination of the latter has been one of the main goals of the present investigation. 
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